A multi-branch convolutional neural network for detecting double JPEG compression
نویسندگان
چکیده
Bin Li, Hu Luo, Haoxin Zhang, Shunquan Tan, Zhongzhou Ji Shenzhen Key Lab of Media Information Security, Shenzhen University, P. R. China ABSTRACT Detecting double JPEG compression is important to forensics analysis. A few methods were proposed based on convolutional neural networks (CNNs). These methods only accept inputs from pre-processed data, such as histogram features and/or decompressed images. In this paper, we present a CNN solution by using raw DCT (discrete cosine transformation) coefficients from JPEG images as input. Considering the DCT sub-band nature in JPEG, a multiple-branch CNN structure has been designed to reveal whether a JPEG format image has been doubly compressed. Comparing with previous methods, the proposed method provides end-to-end detection capability. Extensive experiments have been carried out to demonstrate the effectiveness of the proposed network.
منابع مشابه
Double JPEG compression forensics based on a convolutional neural network
Double JPEG compression detection has received considerable attention in blind image forensics. However, only few techniques can provide automatic localization. To address this challenge, this paper proposes a double JPEG compression detection algorithm based on a convolutional neural network (CNN). The CNN is designed to classify histograms of discrete cosine transform (DCT) coefficients, whic...
متن کاملAligned and Non-Aligned Double JPEG Detection Using Convolutional Neural Networks
Due to the wide diffusion of JPEG coding standard, the image forensic community has devoted significant attention to the development of double JPEG (DJPEG) compression detectors through the years. The ability of detecting whether an image has been compressed twice provides paramount information toward image authenticity assessment. Given the trend recently gained by convolutional neural network...
متن کاملA Two-Dimensional Convolutional Neural Network for Brain Tumor Detection From MRI
Aims: Cancerous brain tumors are among the most dangerous diseases that lower the quality of life of people for many years. Their detection in the early stages paves the way for the proper treatment. The present study aimed to present a two-dimensional Convolutional Neural Network (CNN) for detecting brain tumors under Magnetic Resonance Imaging (MRI) using the deep learning method. Methods & ...
متن کاملCompression Artifacts Removal Using Convolutional Neural Networks
This paper shows that it is possible to train large and deep convolutional neural networks (CNN) for JPEG compression artifacts reduction, and that such networks can provide significantly better reconstruction quality compared to previously used smaller networks as well as to any other state-of-the-art methods. We were able to train networks with 8 layers in a single step and in relatively shor...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.05477 شماره
صفحات -
تاریخ انتشار 2017